Exponential Reflections

Topic 2.10 Inverses of Exponential Functions

Practice Problem 1

The function g is given by $g(x) = 5^x$. Which of the following statements about the inverse of g is true?

- (A) The inverse of g is given by $g^{-1}(x) = x^5$ and is defined for all real values of x.
- (B) The inverse of g is given by $g^{-1}(x) = \log_5 x$ and is defined for all real values of x.
- (C) The inverse of g is given by $g^{-1}(x) = \log_5 x$ and is defined only for x > 0.
- (D) The function g does not have an inverse because the function is not invertible.

Practice Problem 2

The points $\left(-2, \frac{1}{9}\right)$ and $\left(4, 81\right)$ are on the graph of the exponential function *h* given by $h(x) = b^x$, where b > 1. Which of the following statements about the graph of $k(x) = \log_b x$ is true?

(A) The points
$$\left(-2,\frac{1}{9}\right)$$
 and $\left(4,81\right)$ are both on the graph of k because $k = h^{-1}$.

- (B) The points $\left(\frac{1}{9}, -2\right)$ and $\left(81, 4\right)$ are both on the graph of k because $k = h^{-1}$.
- (C) The points $\left(-\frac{1}{2},9\right)$ and $\left(\frac{1}{4},\frac{1}{81}\right)$ are both on the graph of k because $k = h^{-1}$.
- (D) The point (81, 4) is on the graph of k but the point $\left(\frac{1}{9}, -2\right)$ is not on the graph of k because the domain of h is restricted to x > 0, thus the range of k is restricted to y > 0.

Practice Problem 1 Solution:

(C) The inverse of g is given by $g^{-1}(x) = \log_5 x$ and is defined only for x > 0.

The inverse of a general exponential function $f(x) = b^x$ is a logarithmic function of the form $g(x) = log_b x$. Since the range of the exponential function is y > 0, the domain of the logarithmic function is x > 0.

Practice Problem 2 Solution:

(B) The points
$$\left(\frac{1}{9}, -2\right)$$
 and $\left(81, 4\right)$ are both on the graph of k because $k = h^{-1}$.

If the function $f(x) = b^x$ consists of input-output pairs of $\left(-2, \frac{1}{9}\right)$ and $\left(4, 81\right)$ then the inverse function consists of input-output pairs $\left(\frac{1}{9}, -2\right)$ and $\left(81, 4\right)$.

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>