Thursday Night Precalculus Series March 7, 2024

In this AP Precalculus Live session, we will explore polar coordinates and polar functions.

About the Lesson

- This Teacher Notes guide is designed to be used in conjunction with the AP Precalculus Live session and Student Problems document that can be found on-demand:
 - https://www.youtube.com/live/qfUXrTmqq9c?si=BALAFhe cP_VzhqzQ
 - Please note that not all problems/content from the Student Problem Sheet is covered in the video component. Student/Teacher Notes are also useful without students viewing the "Live Session" but can be enriched by that resource.
- This session involves exploring polar coordinates and the features of the graphs of polar functions, such as:
 - Plotting points.
 - Expressing a complex number in polar form
 - Graphing polar functions.
 - Determining intervals on which the radius increases or decreases.
 - o Determining rates of change.
- Students should be able to use the TI-Nspire to verify these features of a polar function.
- Class Discussion: Use these questions to help students communicate their understanding of the problem. These questions are presented in the *Live* video as well.

AP Precalculus Learning Objectives

- 3.13.A: Determine the location of a point in the plane using both rectangular and polar coordinates.
- 3.14.A: Construct graphs of polar functions.
- 3.15.A: Describe characteristics of the graph of a polar function.

Source: AP Precalculus Course and Exam Description, The College Board

Materials:

Student document

- Precal_problems_03_07 Teacher document
- Precal_problems_solutions_0 3 07

YouTube

https://www.youtube.com/live/qf UXrTmqq9c?si=BALAFhecP Vz hqzQ

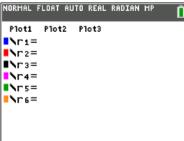
 Documents and materials can be downloaded from this site.

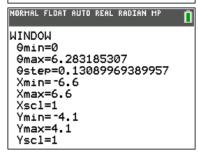
Introduction – Polar Basics

<u>Technology Tip</u>: Change the graphing mode to Polar. Select mode and then select POLAR on the 5th line.

Your $\[y \]$ key should now show radius function inputs with a new independent variable of θ . Your $\[x,\tau,\theta,n \]$ key will be θ by default. The window now includes θ min, θ max, and θ step. θ step is

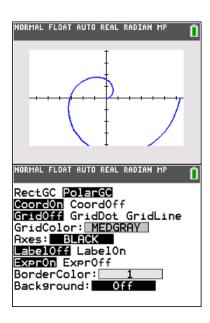
$$\frac{\pi}{24} \approx 0.13$$
 by default.




Class Discussion:

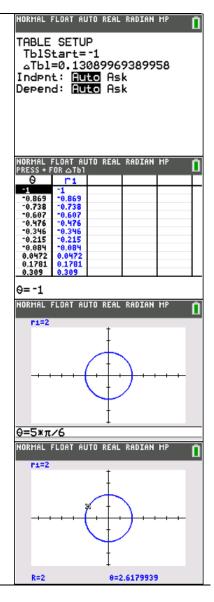
Why does the calculator use $\frac{\pi}{24} \approx 0.13$ by default?

Possible Answers: This step value will naturally take us to the nice rational multiples of π .

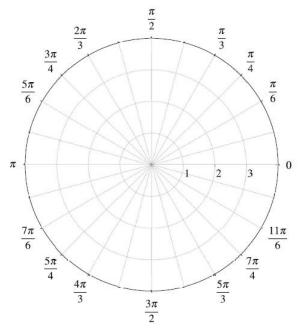


Graph $r = \theta$. Use Trace to observe values of r and θ .

<u>Technology Tip:</u> Trace can be set up to observe r and θ values or x and y values. Select format (2nd 200m) and PolarGC for r and θ values.



Notice that table ([2nd][GRAPH]) shows r and θ values. Use the Table Setup (2nd window) to change Δ Tbl to $\frac{\pi}{24}$.


Graph r = 2. Select Trace and ask for a particular θ value, such as $\frac{5\pi}{6}$, by typing $\frac{5\pi}{6}$. This will locate that point on the circle.

Technology Tip: Making θstep smaller than the default will make the graph more precise. Trace values will be smaller increments. Making 0step larger than the default decreases precision.

Problem 1. (a) - (d)

Plot the points whose polar coordinates are given.

- (a) $\left(2, \frac{5\pi}{6}\right)$
- (b) $\left(-1, \frac{\pi}{4}\right)$
- (c) $\left(3, -\frac{2\pi}{3}\right)$
- (d) $\left(-2, -\frac{\pi}{6}\right)$

Class Discussion:

How do you plot polar points? Do you find the θ first, then locate the r? Or do you locate the r and then sweep around that circle an angle of θ ?

Possible Answers: The polar pair is (r,θ) . It is probably easier to locate the angle θ , then locate the r, especially if the r-value is negative.

*

Class Discussion:

Are polar coordinates unique for a specific point?

Possible Answers: No, they are not. For example, $\left(2, \frac{5\pi}{6}\right)$ and $\left(-2, -\frac{\pi}{6}\right)$ are the same point on the polar graph.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Problem 2. (a) & (b)

Convert the polar coordinates to rectangular coordinates.

(a)
$$\left(\sqrt{2}, \frac{5\pi}{3}\right)$$

(b)
$$\left(-2, -\frac{\pi}{6}\right)$$

*

Class Discussion:

The y-coordinate for 2 (a) is written as $y = -\sqrt{\frac{3}{2}}$. Could this also be written as $y = -\frac{\sqrt{6}}{2}$?

Possible Answers: Yes, those values are equivalent.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Problem 3. (a) & (b)

Convert the rectangular coordinates to polar coordinates.

(a)
$$(2, 2\sqrt{3})$$

(b)
$$(-1,2)$$

Note: The error in the video for 3 (b) is corrected.

*

Class Discussion:

We frequently use the formula $\theta = \tan^{-1} \left(\frac{y}{x} \right)$ to find θ . The range of the inverse tangent function

is
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
. When do students need to add π to have the correct angle?

Possible Answers: Consider the quadrant in which the point in rectangular form is located. If the point is in Quadrant II or III, π should be added to the inverse tangent value.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Problem 4.

Express the complex number 1-i in the polar form $(r\cos\theta)+i(r\sin\theta)$.

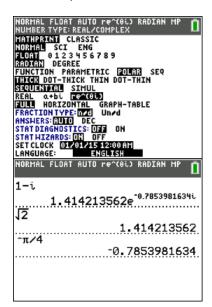
Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Technology Tip: Select Mode and on the 8th row, select $re^{\wedge}(\theta i)$. This is a polar form using an exponential.

The complex number i is 2nd.

Enter the complex number 1-i.



Class Discussion:

Can we use this form of the complex number to check our conversions from rectangular to polar?

Possible Answers: Yes, the calculator will display the r and θ .

The r and θ will display as decimal values.

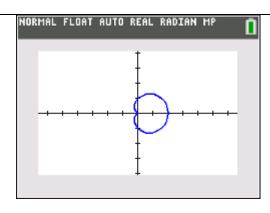
Problem 5. (a) – (c)

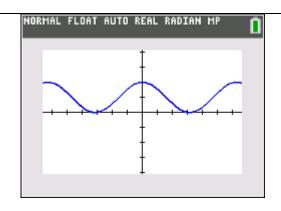
Create a table of values to sketch each polar graph. Use technology to check your work.

- (a) $r = 1 + \cos \theta$
- (b) $r = 3\sin(2\theta)$
- (c) $r = \theta, \ \theta \ge 0$

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.


Class Discussion:


Can we use the graph of the rectangular function to graph the polar function?

Possible Answers: Yes, let's look at both graphs and consider the connections.

$$r = 1 + \cos \theta$$

$$y=1+\cos x$$

At $\theta = 0$, r = 2 which is a maximum value on the polar graph.

At $\theta = \pi$, r = 0 which is a minimum value on the polar graph. That point on the polar graph is at the pole (the origin.)

At x = 0, y = 2 which is a maximum value on the rectangular graph.

At $x = \pi$, y = 0 which is a minimum value on the rectangular graph.

Problem 6. (a) & (b)

Consider the polar function $r(\theta) = \cos\left(\frac{\theta}{2}\right)$ for $0 \le \theta \le 4\pi$.

- (a) Graph the polar function over the given domain.
- (b) Find the average rate of change of r with respect to θ over the interval $0 \le \theta \le \frac{\pi}{2}$. Is the radius increasing or decreasing over the given interval? Explain your reasoning.

Sample Solution:

Refer to the Teacher Solutions Document for the full solution to this problem.

Wrap Up

Upon completion of the discussion, the teacher should ensure that students understand:

- The graphing application can be used to explore polar functions.
- The graphing application can be used to explore the behavior of a polar function.

For more videos from the AP Precalculus Live series, visit our playlist https://www.youtube.com/playlist?list=PLQa 6aWmaC6B-5h5n2Cr5h3G2ZPfJ0HGI

**Note: This activity has been developed independently by Texas Instruments. AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product. Policies subject to change. <u>Visit www.collegeboard.org.</u>